A sound worth saving: acoustic characteristics of a massive fish spawning aggregation.

نویسندگان

  • Brad E Erisman
  • Timothy J Rowell
چکیده

Group choruses of marine animals can produce extraordinarily loud sounds that markedly elevate levels of the ambient soundscape. We investigated sound production in the Gulf corvina (Cynoscion othonopterus), a soniferous marine fish with a unique reproductive behaviour threatened by overfishing, to compare with sounds produced by other marine animals. We coupled echosounder and hydrophone surveys to estimate the magnitude of the aggregation and sounds produced during spawning. We characterized individual calls and documented changes in the soundscape generated by the presence of as many as 1.5 million corvina within a spawning aggregation spanning distances up to 27 km. We show that calls by male corvina represent the loudest sounds recorded in a marine fish, and the spatio-temporal magnitude of their collective choruses are among the loudest animal sounds recorded in aquatic environments. While this wildlife spectacle is at great risk of disappearing due to overfishing, regional conservation efforts are focused on other endangered marine animals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Goliath grouper Epinephelus itajara sound production and movement patterns on aggregation sites

Sound production by goliath grouper Epinephelus itajara was characterized on 2 aggregation sites in the Gulf of Mexico off the southwest coast of Florida, which are likely to be spawning sites, based on the presence of fish with ripe gonads. Goliath grouper produced predominately lowfrequency single-pulse sounds with dominant frequencies around 60 Hz. Long-term acoustic recordings documented th...

متن کامل

Effect of porosity on the characteristics of underwater acoustic sound absorbers using theoretical models‎

Porous materials have good acoustic damping characteristics over a wide frequency range. As for sound waves, many small-scale pores in the coating materials can convert underwater-coating to rough surfaces. The main property of porous absorbents is their resistance against incident sound wave that leads to damping effect. From a physical point of view, damping occurs due to friction between flu...

متن کامل

Acoustic monitoring indicates a correlation between calling and spawning in captive spotted seatrout (Cynoscion nebulosus)

BACKGROUND Fish sound production is widespread throughout many families. Territorial displays and courtship are the most common reasons for fish sound production. Yet, there is still some questions on how acoustic signaling and reproduction are correlated in many sound-producing species. In the present study, our aim was to determine if a quantitative relationship exists between calling and egg...

متن کامل

Investigation on acoustic behavior of acoustic porous absorbers to ‎absorb sound energy and transmission loss index

In this study, the acoustic properties of porous absorbents with different porosity levels have been evaluated using different mathematical models. These models use one or more parameters of materials for calculating acoustic characteristics. In all of these models, materials are considered as equivalent fluid and reactionary characteristics have not been taken into account.

متن کامل

Sound production and spectral hearing sensitivity in the Hawaiian sergeant damselfish, Abudefduf abdominalis.

Sounds provide important signals for inter- and intraspecific communication in fishes, but few studies examine fish acoustic behavior in the context of coevolution of sound production and hearing ability within a species. This study characterizes the acoustic behavior in a reproductive population of the Hawaiian sergeant fish, Abudefduf abdominalis, and compares acoustic features to hearing abi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biology letters

دوره 13 12  شماره 

صفحات  -

تاریخ انتشار 2017